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ABSTRACT

The consistent directions of the least squares estimators in a linear

model are defined to be the linear combinations of parameter estimates that

are asymptotically consistent. When the design variable is univariate and the

regression function is smooth, consistent directions are characterized in

previous papers (Wu, 1980; Wu and Wang, 1982) in terms of the convergence

rates of the design sequence to its limit points. Extensions of these results

to multivariate design variables are considered in the present paper.
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SIGNIFICANCE AND EXPLANATION

A basic requirement of the least squares estimator in a linear model is

that it should be close to the true parameter for a large sample size. If

this is not the case, one would like to know what linear combinations of the

components of the least squares estimator are close to their counterparts in

the parameter. In this paper we study the characterization of these

combinations for linear models with smooth regression functions and

* multivariate input variables.
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CONSISTENT DIRECTIONS OF THE LEAST SQUARES ESTIMATORS IN LINEAR MODELS

Song-Gui Wang and C. F. Jeff Wu

1. Introduction

Consider a linear model

, =' AQ) + E (1.1)

where 0' - (6 ,...,6 ), ('x) -; (X,.o.,f (x)), f Cx), j - 1,...,p, are univariate1 p - I1 p. j

functions of the input vector x = (x1,...,Xq)', the random error e has mean zero,

variance a 2 and errors corresponding to different observations are uncorrelated or

independent. If yi is observed at xi, i - 1,...,n, and X = 'a,...,f( n)] is of

full rank, the least squares estimator (LSE) of 0 is

WXX) XIX (1.2)

where - 1..... yn1. It is known that 0 + 0 a.s. (or in prob.) iff (AXn)'1 + 0

. when {g }n are i.i.d. (or uncorrelated). The strong consistency part was proved in Lai
ii

et al. (1979). For recent results on the consistency of LSE, see the references of Wu
(1980) and Wu and Wang (1982). In case (X'Xn)-1 + 0 does not hold, 0 is not consistent

for estimating the vector 0. It was observed in Wu (1980) that, in this case, the best

linear unbiased estimator WO of a linear combination b b 0, may still be

consistent for some vectors b. Such a vector b is called a consistent direction of the

LE . The space of consistent directions is defined as

n
S(f) - 1b a (x-X )-,b b'(1 f( )f(x)') 1b 0 as n +

n n-
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A general characterization of S() as given in Wu (1980). When the input x is

scalar (q - 1 in (1.1)) and f is any smooth function in x, a more refined

characterization was given in Wu and Wang (1982) in terms of the convergence rates of the

design sequence to its limit points. More specifically, if a is a limit point, i.e.,

there exists a subsequence xni + a as i + -, and !(Xni- a) 2r , the rthi i
(r)derivative C (a) is a consistent direction under smw smoothness assumption n Jx)

*. near a. xxtension of this result to multivariate input t is nontrivial because

different components of the vectors x may converge to their limit points at different

rates. A simple Special Case (constant convergence rate for all components) was considered

*i in Wu and Wang (1982). The purpose of this paper is to present nore general results for

*i~i the multivariate input variable .

The mathematical results developed in the three papers may find applications beyond

the consistency of LON. For the convenience of the potential users of our results, we will

give this problem an equivalent formulation that is void of statistical jargons,

A. Given a sequence of p x 1 vectors (Q.) 1 , characterize the subspace
n

S ' i I +0 as n -) in term of the 'limiting" behavior of (v" 1

B. If v is a smooth function of a q x I vector , i.e. y - t(v£) and

is smooth, characterize the subapace S defined in A in terms of the "limiting" behavior

of the input sequence [w ).
" Typically q is much smaller than p.

Problem A was solved in Wu (1980). Problem B was solved for some f functions and

input variables In Wu (1980), Wu and Wang (1982) and the present paper.
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2. Main results

Before stating the main results, we define sove notations. We assume that the input

sequence {xi) is bounded, where x' - (xi... Xiq)l The less interesting came that

{x } is unbounded can be treated as in Wu (1980). If there exists an infinite

subsequence ni  such that x + a as i *, we say that t is a limit point of•ni, n

Define (p,6), the 8-neighborhood of a' - Ial,...,aq), to be

x (x1 x.... . i < - ai < I 1,.... q), and Cr(,6) to be the set of functions

with rth continuous partial derivatives in N(t,6). In particular, C
0
(t,6) is the set

of continuous functions in N(a,d). Define f(x) e Crla,6) iff filx) 4 Cr(1.8) for

1 4 i 4 p. The little o-notation un - o(vnl means lUnl/lVl , 0 as n **.

Define (x-)V i- (xi ai)~~ii

[(x - a)Vlkf() - ([x - t)lkf (t) I(x - kf (a))'

S- k (xjl - a) " (Jk ax 1  .. ax 1 (2.1)

Si(k,t) r (2.2)
k1(xn - a )r

and

Si(rtA) - ni ( a xn -a )--(x -Xa ) [rIlx -a )rl (2.3)

Sr ek nii il n 1ajr ax 1a rI t

where tk = l ... "ikl'

Tk " (tk - 0 ... 
1
Jk) : 1 JI 4m q, 1 4 m 4 k) , (2.4)

and A is a subset of Tr k -

Suppose (J1) 3 is a partition of J = (1,2,...,q). Define a partition of Tr as

follows:

-3-
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Tl - t
4 1

i..,'r Tr,: J, e J U J2  for all a and ea e J1

for at least one a) ( (2.5)

rTr2 " 4 01 ..... Ar) e Tr , ,e J2 for all a) , (2.6)

T * T , 1, * 3 for at least one a) ( (2.7)

* le are now in the position to state the main theorems.

Theorem 1. If 1(x) e C0(t6) for some 6 > 0, then f(a) is a consistent direction for

.., any limit point a of the design sequence [ .

This follow immediately from Theorem 2 of Wu (1980).

Theorem 2. Suppose

(M) + as + , where x' -(
i r0+1 i Xnj iexn2""OXniq)e

(ii) £(x) e C (a,6) for some 6 > 0, r0  integer,
3

(Iii) let (jt) 11 be a partition of the set 3 - (1,2,...,q) satisfying the following

conditions for a fixed J0 e J2

0 je 1
L.S %ij - a(
.. m 4 j : j 2 (2.8)

3

where a *0, for all j e J2"

(Xnj - g02r o (2.9)
'" i I ro0

(xn j0 - a j0)%0), 6) j J3 (2.10)

4 For r 1,2-...,ro

r- 1 (r)
---< Ik0 sik 0) hi(r'O',Tr 3 ) + > (J 1 0 (2.11)

i*- k-00
'i , r)

for all V with v'.."O (t) 0 0 where 81 (kj 0 ), i(r,JoTr3 ) and Tr3 are defined in

(2.2), (2.3) and (2.7). Then the vectors

!.-

*........................ ''ikil - i 
I

-- " - ' "... •'



(r )rf(a)
a) a .. a r r 1,2,....r o

IreTr 2  r

are consistent directions.

Proof: According to Theorem 1 of Wu (1980), we only need to prove that for any fixed

1(r r0

) w f(x )12 for any with wv(r)(a)*O

Consider a Taylor series expansion of f(!) at a

r k -r+1

E( ) I (n L  ) l)/k1 + H - al J f(t)/(r + e1)1::i k- " E In,

Swhere ei"ni 
+  M(x i "a-), 

i) " g( ..... ()1, 0 4 M 1 for 1 4 jI q

and all i. Thus,

t,I ((Xn]
2
'o

i iI 2
w 'C(x - a)V r+ ( 2

ti + 1, i -

(r 1)I(x n 
r

2r[ r n .2

2 r 2

l ii --j) iI S'k jo + R"r- 1,j)

=i Cxj &- O )Sir (2.12)

where

- )V) r+1 ~i
R (r + 1,J)

(r + 1)1(x. - r

-5-



By assumption (ii), there exists an N 4 0, such that

a r+1f Wx
sup J 4 N, t t,2# ......- m~~~6(2,6) la:1-. Xll

Crm Cauchy-Schvarz inequality, (2.8) and (2.10),

Ri(r + l1jo) 4 (constant)l[(x - a)V]r+lf((1/Ix - ajoIr 0 as

We decompose Si(r,1o) into two parts

81 (r,J0 ) - Si(r,J0 ,T1r U r2 ) + Si(rJ0,Tr3)

From (2.8), it is easy to see that

S(r~io,Tri U Tr2 ax. , ** r
t err r2 r 0

By assumption (2.11), there exist no And 1 > 0 such that for 4 > N0, 82ir > . Since

(2.9) implies x,, - aj ) 2r for any r 4 rO, from (2.12), the required result

is proved. 0

The linear space spanned by V 0 (t), is independent of the choice of J. e j2. in

fact, for any J1 e r2 J : let

v~r)

'1 "r2 1 r ax *. ai

where

i"a (xn1 j auJ)/(x 11  a 1), i

4 It is easy to see that

v (r) (a) r v (ra) for 1 4 r r0 .'J,0 J 1 -j

Thus the two vectors span the sam linear subasce.

When J, 33 - * the empty met, all the components of x converge at the same

rate and Theorem 2 takes a simpler form.

'.,, .- 6-
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Corollary 1. Suppose (M) and (ii) of Theorem 2 hold and for some 1 4 j0 4 q

Ur . a. for 1 4 j 4 q (2.13)
x -an 1 0  j0

where a * 0,',

"(Xn io ajo) 2 (2.14)

Then

[ -V~rf(a) are consistent directions for r -12,.o.,r 0

where

rf)

~=(~a..rq an IuVrfa), ' . (Cgl .... (L ) and ISvIr (e -L .e r j .. a x- ax " " j
q tre r Ii r j *'*

Proof: It is sufficient to prove that (2.11) holds for the case under consideration. In

fact, since Tr3 - *, Si(rjOTr3 ) - 0, and

__(k,1_)____(xni_ jI - aJ) . nj. a k) 3kfa)

S - r-k (x - a ... (x - a ) ax .' ax
(x n a0 t Jo ni 0 J O

(x n"jo - a )O -k Si k 'jo) for k - 0,1,...,r .
muni0 " 0  -kk0G

From (2.13)

Si(k,jo) + (aV]kf(a), k - 1,2,...,r ,

Si(OJo) -

Let k0  be the first k with w,([v~kf(a) * 0. From w,[aV ~rf(a) * 0, we have

k0 4 r. Thus, the S2r in (2.12) are dominated by the leading term Si(k 0,j0 ), which is

bounded away from zero as i + -. Therefore (2.11) is satisfied. 0

Nu and Wang (1982) gave a more direct proof of Corollary 1.

-7-



If J 3 and J2 ( (jO} in Theorem 2, we obtain immediately the following

Corollary.

Corollary 2. Under conditions i) and (ii) of Theorem 2 and the following conditions:

for a fixed Jo

Xnij  - o aJO for all J * jO , (2.15)

i (x-iJo a j O 2r , (2.16)

lia Sitk,jo) + wl r > 0
;)Xjo

for all w with w' - 0 and r - 1,2,...,r0  (2.17)

where

3r IW ar fr
8f~a) f~a f (a)

1r axr ax

Then

arf(a)

a are consistent directions for r -1,2,...,r

Similarly, for J, - * and J2 ( {'0 ' analogous results readily obtain.

For multiple regression, we only need to consider a special case of Theorem 2, i.e.

r - 1. Two cases are considered below as corollaries.

Corollary 3. Suppose i), (ii) and (2.8), (2.9), (2.10) of Theorem 2 for r0 = I hold,

and

",,'f(a)" +f( ) n -a) ()

:mW.'a - i > 0 (2.18)xnij0" 10 jej 3 1 n 0l0 joj0 2

for all w with

!-9-
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Then

a j is a consistent direction
jeJ2  j

From Corollaries I and 2 we observe that (2.11) holds automatically for r0 > 1 only

if Jt and J3 are both empty. Such is not the case for r0 = 1. It is easy to see that

if J3 * (2.18) is automatically satisfied, and thus the following corollary.

Corollary 4. Suppose (i) and (ii) of Theorem 2 hold for r0 = I and

(iii) there exists a partition J1 and J2 of the set J = (1,2,...,q) such that for a

fixed Je e J21

Xnj - aj 0 J J
lim - -

i+ x n J0  aj0  a J e Je 2

where u J O,-, and
ij

(XniJo -ajo) 0 .2

Then

X -j is a consistent direction.
j e ax J

The following theorem shows that by further partitioning J3 into disjoint subsets

more consistent directions will be obtained.

Theorem 3. Suppose (i) and (ii) of Theorem 2 hold, and there exists a partition {J1 

of the set J {1,2,...,q) satisfying the following conditions:

-9-



(iii) For a fixed j A e j A I

X~nik "-ak

liu = oj. for all k J

where *kit 1 *0,-.

(iv) For any j e k C , = 1,2,...,h - 1

Xni: - aj ' O(Xnik - ak)

(v) There exists an h0 4 h such that for h0 ( 1 C h, there exists an integer r

s.t.

(X nk ak) - o((xnij - aj) k e Jh" J eJt

* 2r
(xi - a,) , eC J, I h0 .

(vi) For h0 <14h

r-t
im I Si(k'j ) + Si(rJi, ) + wv (r)a > 0

for w with wlv(r) (a) 0, r
-it
....: ( ) O, =1,.,r

where (,...,lid e Tr for at least one it e U k
* k-1+1

r, min(r t t ).
I t

Then the vectors

r1

"" eJ2 I I'" e t r A

A - ho1h0  1...,h, r - 1,2....r

are consistent directions.

-10-
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Proof: For any fixed Jj, h0 4 1 4 h - 1, JO e J, we regard J., J U 3i and
h k-1

U k as 2' jo J, and J3V respectively, in Theorem 2. From Theorem 2 we

k1+1
conclude that (ar)() are consistent directions for I - hopho + 1.... - 1, and

r - 1,2 ,...,r~. That v (a) are consistent directions for r - 1,2,...,r 0  follows from

Theorem 2 with J3 0

By combining the results in Theorems I and 3 for each limit point of the design

sequence and using Theorem 2 of Wu (1980), we obtain the following main theorem.

Define L(a,...,a to be the subspace spanned by vectors a1,,..., o

Theorem 4. Suppose a,, J - 1,...,k, are k distinct limit points of (x I and

), j - 1,...,k, A - 1...,t1. are the consistent directions obtained from Theorem 3,

then

k+
B St) - A:)Mf) B k+ l fM

where

A() - L{f(a v (a ), #- 1.....t1), j - 1,..... ,k ] M
"1 - 1 -A-1

Bk+I )(~~L A(~ J"I v'1)12=

k

for any e [ [ P,( )]i and ,'. * 0).
i.1

There is no loss of generality in assuming finite k in Theorem 4 as was noted in Wu

and Wang (1982).

-11-
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3. Examples

In this section the general results developed heretofore will be applied to some

regression models. These examples show that our conditions are easier to verify than the

more typical condition b'(XnXn )'b + 0.

(i) Multiple regression

= V,x) + ( (3.1)

*. where 8, = (80 1 ... ), x' - (lx 11.... uxq.), x) -x

For the design sequence x1 - (xix1, ...,x iq1, x 0  ,

S- 1, X a - (a0,a1.... aq.1)h a0 - 1.

(a) If x,, aj + 1- 1/2 , j 0 1, Corollary 4 with a 1, j - 1,2,...,q - 1,

r- 1, J I  (0), J2 = {1,...,q - 1) applies. From Theorem I and Corollary 4,

a- (0,1,...,1)' are consistent directions.
J-1 a - / 2  -1 3

( lb) If xi - a, + xi - a3 + J ) 2. Partition J - (0,1,2,...,q - 1)If 4 1 a1 ,, ajC)
into J 1 - (0), J2 - {1}, J 3 - {2,...,q - 1). Therefore, a, ..- ,1,0,...,0)P and

-"0,0,101,...,1)' are consistent directions from Theorem 1, Corollaries 3 and

J-2j

4, respectively.

(c) If Xij= aj + j ), 1. It is easy to verify that

i f A), A - 0,1,2,...,q - 1, h, - [q/2j, where [x) is the largest integer less than

* or equal to x, i and h o are defined in Theorem 3. Therefore

x j - 10,...,0,1,0,...,01', j - [q/21,...,q, and a are consistent directions.

(ii) Multiple polynomial regression

,.- S flx) + ( (3.2)

where f Cx), j - I,...,p, are monomials in x of degree less than or equal to d. If

f filx fjx!) for i * J, then p - (d + q)l/Cdlqt).

We will describe in more detail the general results to be obtained for the following

quadratic polynomial regression model in two variables:

y 0 + x + 0 xx +,x2 +9x2+ C (3.3)-I0 11 2+ 3 12 4 1 5 2
* and limit point a - (a ,a2)'.

7.

-12-
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(a) If xij -a I 1/4 1 < j 4 q, Corollary 1 with L - 1, j = 1,...,q and

r0 . 2 applies. Thus f --- and S are consistent directions for
I i and ij ix a

model (3.2). In particular, for model (3.3), the three consistent directions are

.(1, 1 a2 ,aea2laa 2)

11 2

• Fx, +  (°'1'I1a + a2'2al'2&2)''

2 -3 2ft)

axa .-- - ,-,,2,2,2)1
ij-1 i j

(b) If xi- a + i "1/ 2 for 1 4 j 1 Jo and - a + 1-1/ 3  for j. < j q,

then J- (1,2,...,o, O2 -{ + 1,...,q}, r1 - r2 - 1 in Theorem 3. Therefore

o af()

' V,, and are consistent directions. For model (3.3) and
-1 a n,-o+1 a

0 1 1, the last two consistent directions are

ax = (0',,a2,2a1,'O)'

ax2  .0,0,1,a1 ,0,2& 2)'

(c) If xi, =5 j + iI / ( + ), j 1,2,...,q, it is easy to verify that

S- {}, F. - 1,2,...,q, hO - , 2 r- mini(' , + ']J and r - 1 for all

N ho  where Jt, ho,  and ri are defined in Theorem 3. Thus we know that

f l,--. 1 - E(q + 1)/21,...,q, are consistent directions.

1

: -13-
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